

06.06.2023

Regenerative Energieerzeugung Wärmeversorgung Freibad

Bauvorhaben:

OBS und Freibad Bad Essen

Bauherr:

Gemeinde Bad Essen Lindenstraße 41/43 49152 Bad Essen

PV-Anlagen

PV-Anlagen

Abbildung: Übersichtsbild, 3D-Planung

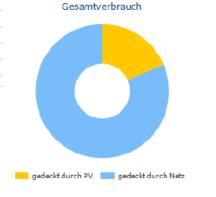
PV-Anlage

3D, Netzgekoppelte PV-Anlage mit elektrischen Verbrauchern

Klimadaten	Osnabrück, DEU (1995 - 2012)
Quelle der Werte	DWD TMY3 (Valentin Software)
PV-Generatorleistung	23,8 kWp
PV-Generatorfläche	111,9 m²
Anzahl PV-Module	56
Anzahl Wechselrichter	1

PV-Anlagen

Simulationsergebnisse


Ergebnisse Gesamtanlage

PV-Anlage

PV-Aniage	22.00	LAME	
PV-Generatorleistung	23,80	kwp	PV-Generatorenergie (AC-Netz)
Spez. Jahresertrag	863,09	kWh/kWp	
Anlagennutzungsgrad (PR)	92,49	%	
Ertragsminderung durch Abschattung	0,0	%	
PV-Generatorenergie (AC-Netz)	20.558	kWh/Jahr	
Eigenverbrauch	15.723	kWh/Jahr	
Abregelung am Einspeisepunkt	0	kWh/Jahr	
Netzeinspeisung	4.835	kWh/Jahr	
Eigenverbrauchsanteil	76,5	%	Eigenverbrauch Abregelung am Einspeisepunkt
Vermiedene CO ₂ -Emissionen	9.655	kg/Jahr	Netzeinspeisung

Verbraucher

Verbraucher	85.000 kWh/Jahr
Standby-Verbrauch (Wechselrichter)	17 kWh/Jahr
Gesamtverbrauch	85.017 kWh/Jahr
gedeckt durch PV	15.723 kWh/Jahr
gedeckt durch Netz	69.293 kWh/Jahr
Solarer Deckungsanteil	18,5 %

PV-Anlagen

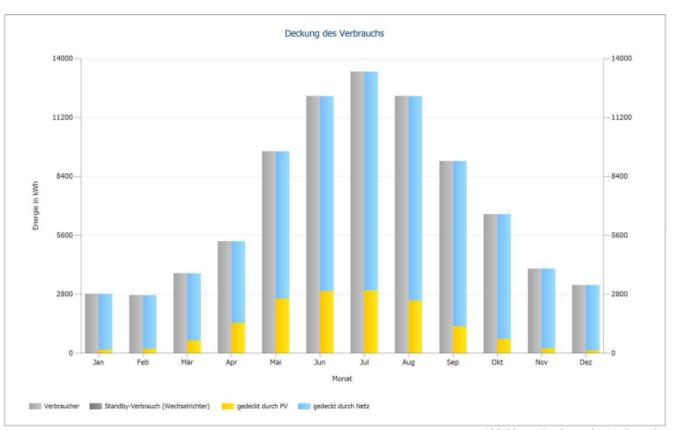


Abbildung: Deckung des Verbrauchs

PV-Anlagen

Freibad Bad Essen

Eckdaten und Anmerkungen

- PV Generator ca. 23,8kWp.
- Kosten PV Anlage ca. 39.000,00 Euro zzgl. MwSt.
- Kosten für Umbau NSHV ca. 7.000,00 Euro zzgl. MwSt.
- Nebenleistungen ca. 8.000,00 Euro zzgl. MwSt.
- Amortisationszeit ca. 9,4 Jahre
- Strompreis nach Strompreisbremse (0,40 Cent Brutto).
- Keine Wandlermessung erforderlich.
- Dachfläche muss geprüft werden.
- Statik der Dachfläche.
- Evtl. Hausanschluss Erweiterung.

PV-Anlagen

PV-Anlagen

Abbildung: Übersichtsbild, 3D-Planung

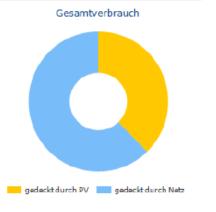
PV-Anlage

3D, Netzgekoppelte PV-Anlage mit elektrischen Verbrauchern

Klimadaten	Osnabrück, DEU (1995 - 2012)
Quelle der Werte	DWD TMY3 (Valentin Software)
PV-Generatorleistung	76,5 kWp
PV-Generatorfläche	359,7 m ²
Anzahl PV-Module	180
Anzahl Wechselrichter	4

PV-Anlagen

Simulationsergebnisse


Ergebnisse Gesamtanlage

PV-Anlage

PV-Generatorleistung	76,50	kWp	PV-Generatorenergie (AC-Netz)
Spez. Jahresertrag	888,57	kWh/kWp	
Anlagennutzungsgrad (PR)	90,08	%	
Ertragsminderung durch Abschattung	2,5	%	
PV-Generatorenergie (AC-Netz)	68.056	kWh/Jahr	
Eigenverbrauch	44.146	kWh/Jahr	
Abregelung am Einspeisepunkt	0	kWh/Jahr	
Netzeinspeisung	23.911	kWh/Jahr	
Eigenverbrauchsanteil	64,8	%	Eigenverbrauch Abregelung am Einspeisepunkt
Vermiedene CO _z -Emissionen	31.948	kg/Jahr	Netzeinspeisung

Verbraucher

Verbraucher	117.000	kWh/Jahr
Standby-Verbrauch (Wechselrichter)	81	kWh/Jahr
Gesamtverbrauch	117.081	kWh/Jahr
gedeckt durch PV	44.146	kWh/Jahr
gedeckt durch Netz	72.935	kWh/Jahr
Solarer Deckungsanteil	37,7	%

PV-Anlagen

OBS Bad Essen PV-Anlagen

Eckdaten und Anmerkungen

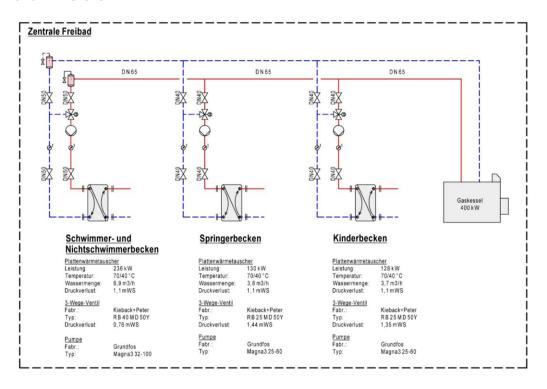
- PV Generator ca. 76,50kWp.
- Kosten PV Anlage ca. 146.500,00 Euro inkl. MwSt.
- Kosten für Umbau NSHV ca. 24.000,00 Euro inkl. MwSt.
- Kosten Leitungsverlegung ca. 11.500,00 Euro inkl. MwSt.
- Nebenleistungen ca. 29.700,00 inkl. MwSt.
- Amortisationszeit ca. 10,2 Jahre.
- Strompreis nach Strompreisbremse (0,40 inkl. MwSt.).
- Sep. Zählung PV Anlage.
- Wandlermessung erforderlich.
- Dachfläche muss geprüft werden.
- Statik der Dachfläche.
- Keine Erweiterung des Hausanschlusses (200A).

Wärmeversorgung

Wärmeversorgung Freibad

Für die Wärmeversorgung wurden mehrere Varianten untersucht. In der Präsentation werden aufgrund der Übersichtlichkeit nur 4 Varianten vorgestellt.

- Variante 1	Austausch des vorhandenen Gaskessels im Freibad gegen einen neuen Gaskessel
- Variante 2	wie Variante 1 zusätzlich Einbau eines Solarabsorbers zur Schwimmbadwassererwärmung
- Variante 3	Anschluss des Freibades über eine Nahwärmeleitung an die Wärmeversorgung der Oberschule mit Einbau einer Luft-/Wasser-Wärmepumpe in der Schule.
- Variante 4	wie Variante 3 zusätzlich Einbau eines Solarabsorbers zur Schwimmbadwassererwärmung



im Osnabrücker Land

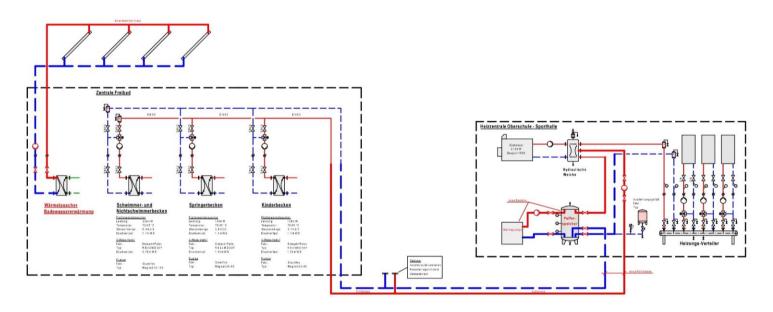
OBS/Freibad Bad Essen

Wärmeversorgung

Variante 1

- Der vorhandene Gasbrennwert-Kessel wird 1 zu 1 gegen einen neuen Gasbrennwert-Kessel ausgetauscht.
- Herstellungskosten Kesselanlage
- Demontagekosten
- Nebenleistung

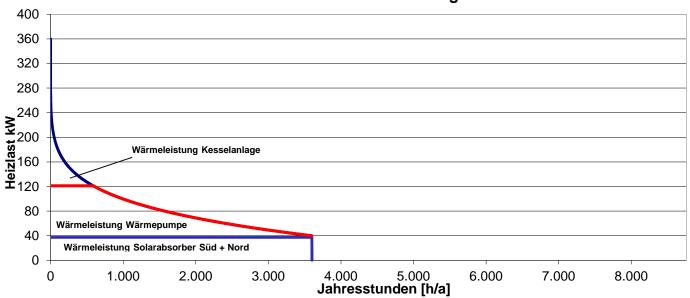
35.000 € zzgl. MwSt.


7.000 € zzgl. MwSt.

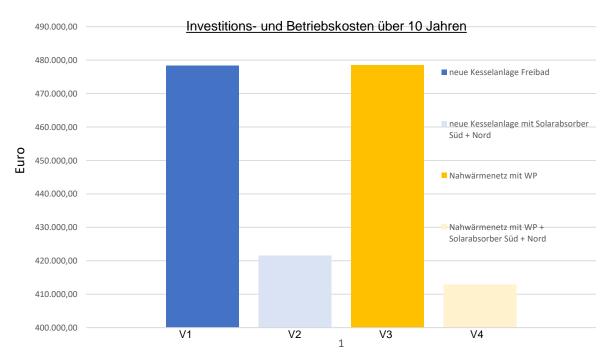
8.500 € zzgl. MwSt.

Wärmeversorgung

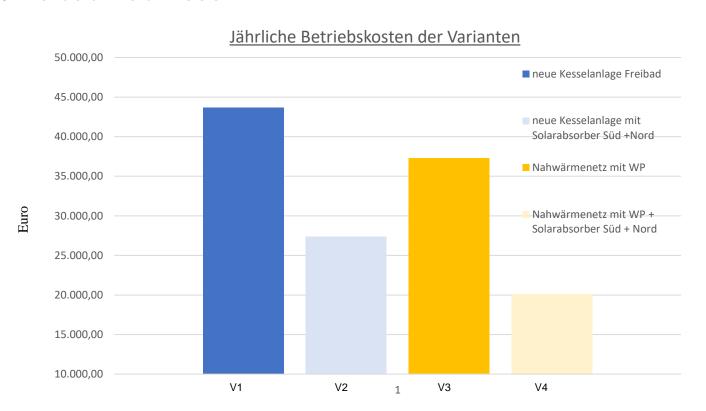
Variante 4


- In der Oberschule wird für die Wärmeerzeugung eine Wärmepumpenanlage ergänzt.
- Die Oberschule und das Freibad werden mit einer Nahwärmeleitung verbunden.
- Im Freibad wird ein Solarabsorber für die Badewassererwärmung installiert.
- Herstellungskosten Solarabsorber 106.000 € zzgl. MwSt.
- Herstellungskosten Wärmepumpen 305.700 € zzgl. MwSt.
- Herstellungskosten Nahwärmetrasse
 61.000 € zzgl. MwSt.
- Nebenleistung nur Wärmepumpenanlage 28.000 € zzgl. MwSt.
- Die BAFA-Förderung ist in den Herstellungskosten nicht in Abzug gebracht.

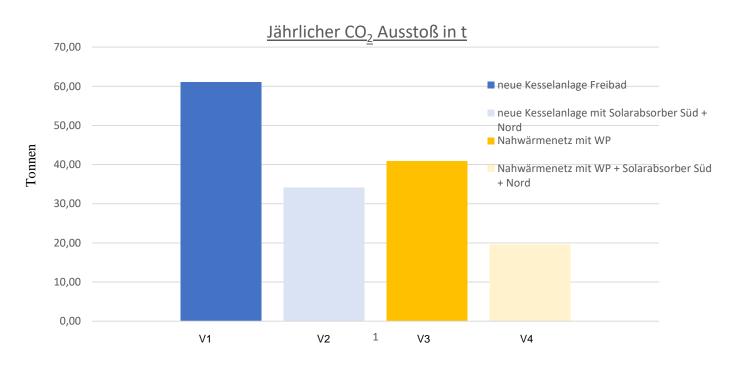
Wärmebedarf Freibad 2021	304.086 kWh/a
Wärmebereitstellung Solarabsorber	134.000 kWh/a
Wärmebereitstellung Wärmepumpen	150.612 kWh/a
Wärmebereitstellung Gas-Brennwertkessel	19.474 kWh/a
Deckungsanteil Solarabsorber	44,07 %
Deckungsanteil Wärmepumpe	49,53 %
Deckungsanteil Gas-Brennwert-Kessel	6,40 %



im Osnahrücker Land


OBS/Freibad Bad Essen

- Die Investitionskosten wurden ohne Zinsen gerechnet.
- Die Betriebskosten wurden ohne Preissteigerung gerechnet.
- Die Gas- und Strompreise wurden gemäß der aktuellen "Preisbremse" angesetzt.
- Investitionskosten Variante 1: netto 42.000 € ohne Nebenleistungen
- Investitionskosten Variante 4: netto 245.790 € ohne Nebenleistungen inkl. Förderung
- Nahwärmetrasse und Wärmepumpe können über die BAFA gefördert werden. Die Förderung ist in den Betrachtungen berücksichtigt.



- CO2-Faktor Erdgas
- CO2-Faktor Strom
- $0,201 t_{CO2/MWh}$
- 0,366 t_{CO2/MWh}

Wärmeversorgung

Eckdaten und Anmerkungen

 Gesamtkosteneinsparung zwischen der Variante 1 (neue Kesselanlage) und Variante 4 (Nahwärmenetz)

+ WP + Solarabsorber über 10 Jahre betrachtet: 13,7 %

- Jährliche Betriebskostenersparnis zwischen Variante 1 + 4: 53,9 %

- CO₂ Reduktion zwischen den Varianten 1 + 4: 67,9 %

- Durch die Eigenstromerzeugung kann der CO2-Faktor für den Strom noch reduziert werden.
- Die Wärmepumpen versorgen im Frühjahr + Herbst auch die Oberschule mit Wärme. Hierdurch erhält die Schule auch einen regenerativen Anteil und der CO2-Ausstoß wird auch hier reduziert.
- Die Aufstellung der Wärmepumpen muss genau geprüft werden, damit die Schallwerte eingehalten werden.

Solarabsorberanlage

Freibad Bad Essen

Solarabsorberanlage Freibad

Fläche Solarabsorber mit Südausrichtung 300 m² Fläche Solarabsorber mit Nordausrichtung 200 m²

Wärmeertrag bei Südausrichtung 320 kWh/m²a Wärmeertrag bei Nordausrichtung 190 kWh/m²a

Solarabsorberanlage

Eckdaten und Anmerkungen

-	Gesamtfläche der Absorberanlage	500 m ²
---	---------------------------------	--------------------

- Wärmeertrag der Absorberanlage 134.000 kWh/a

- Deckungsanteil Absorberanlage 44,07 %

- Herstellungskosten Absorberanlage 85.000 € zzgl. MwSt.

- Herstellungskosten Einbindung der Anlage 21.000 € zzgl. MwSt.

- Nebenleistungen 22.700 € zzgl. MsSt.

- Amortisationszeit ca. 7,90 Jahre

- Energiekosten nach Strom- und Gaspreisbremse

- Sanierung der Dachfläche vor Aufbau
- Statik der Dachfläche prüfen.

Nahwärmetrasse

Nahwärmetrasse Oberschule/Freibad

Trassenlänge ca. 180 m Option für Anschluss weiterer Gebäudeteile der Oberschule

Nahwärmetrasse

Eckdaten und Anmerkungen

- Trassenlänge ca. 180 m

- Herstellungskosten Rohrtrasse 30.000 € zzgl. MwSt.

- Herstellungskosten Rohrgraben 21.000 € zzgl. MwSt.

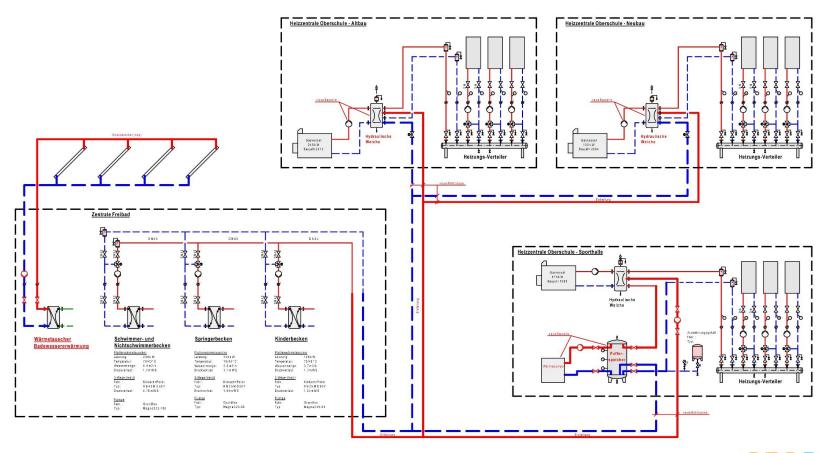
- Herstellungskosten Hydraulische Einbindung 10.000 € zzgl. MwSt.

- Nebenleistungen 8.600 € zzgl. MwSt.

- Die Nahwärmetrasse zwischen dem Gebäude ist nur wirtschaftlich, wenn die Wärme zum Großteil regenerativ erzeugt wird und die Anlagentechnik hierdurch besser ausgenutzt wird (Freibad Wärmebedarf im Sommer/Schule Wärmebedarf im Winter).
- Die Nahwärmetrasse wird über die BAFA, wenn sie mit regenerativen Energien gespeist wird, mit bis zu 30 % gefördert. Die Förderung ist bei den hier genannten Herstellungskosten nicht in Abzug gebracht.

Original Wärmeversorgung auf dem Gelände der OBS

Aktuelle Wärmeerzeuger


Kessel 1 Turnhalle Kessel 2 Hauptgebäude/Altbau Kessel 3 Neubau Leistung 575 kW Leistung 249 kW Leistung 150 kW Baujahr 1998 Baujahr 2012 Baujahr 2004

Optional Wärmeversorgung auf dem Gelände der OBS

Optional Wärmeversorgung auf dem Gelände der OBS

Eckdaten und Anmerkungen

- Auf dem Gelände der OBS gibt es 3 Wärmeerzeugungszentralen, welche nicht miteinander verbunden sind.
- Durch die Verbindung der Wärmezentralen über eine Nahwärmeleitung ergeben sich folgende Vorteile:
 - In der Übergangzeit kann die Wärme der Wärmepumpenanlage nicht nur im Gebäudetrakt der Turnhalle genutzt werden, sondern auf dem gesamten Gelände der OBS
 - Bei Kesselausfall in einer Zentrale kann die Versorgung aus einer anderen Zentrale übernommen werden.
 - Bei anstehenden Kesselsanierungen, kann geprüft werden, ob die Zentralen noch benötigt werden.
- Die Wirtschaftlichkeit und die Herstellungskosten für die Option wurden im Rahmen dieser Untersuchung nicht ermittelt.

Freibad Bad Essen Wärmeversorgung

Zusammenfassung

- Durch die stark gestiegenen Energiepreise und unter dem Ansatz der CO2-Reduktion ist der Einsatz eines Solarabsorbers zur Freibadewasserbeheizung zu empfehlen.
- Mit einer Amortisationszeit von 7,90 Jahre (statisch betrachtet) ist eine solche Anlage wirtschaftlich. Die Nutzungszeit für den Absorber liegt bei ca. 25 – 30 Jahren.
- Bei der Betrachtung der Wärmeversorgungsvarianten stellt sich heraus, dass eine Nahwärmetrasse mit Ergänzung der Heizzentrale in der Schule um eine Wärmepumpenanlage am wirtschaftlichsten ist.
- Hier erweist sich als Vorteil, dass die "teure" Technik (Wärmepumpe) ganzjährig ausgelastet ist.
- Die Betriebskosten und der CO2-Ausstoß werden durch den Einsatz einer Wärmepumpenanlage reduziert.

